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a b s t r a c t

Using empirical models, parameters have to be estimated from experimental data. Experimental charac-
terization of fuel cell stacks is an expensive and time-consuming task. Therefore it is very important to
choose an experimental design, which maximizes the statistical quality of the resulting information. Box
and Lucas (Biometrika 46 (1959)) showed that it is possible to optimize nonlinear experimental designs
by the minimization of the covariance matrix of the least squares estimate. The aim of this work is to adopt
this general method in order to investigate its ability for application in polymer–electrolyte–membrane
fuel cell (PEMFC) characterization. Based on an empirical PEMFC model a D-optimal design criterion
esign of experiments (DoE)
equential search

has been developed and validated. Numerical methods, evolutionary and heuristic are investigated with
respect to fast and robust evaluation of the design criterion. For a given set of experimental data best
results are achieved using a heuristic approach, a so-called sequential search. Based on that result
an algorithm to obtain an optimal design of experiments (DoE) in a nondeterministic operating area
is introduced. The proposed algorithm is able to take into account experimental limitations due to
test facilities or examinee. The algorithm further allows to include existing and for reference needed
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experiments.

. Introduction

Intelligent energy management is a cost effective key path to
ealize efficient automotive drive trains. To develop operating strat-
gy in fuel cell drive trains, precise and computational efficient
odels of all system components, especially the fuel cell stack, are

eeded.
System identification is an essential step in empirical modelling.

specially, the estimation of unknown parameters is a typical prob-
em in the development of a PEMFC model. The standard method
s the analysis of experimental data from measurements. Due to
ystem complexity of a PEMFC the experimental investigation is
n expensive and time-consuming task. In most of the cases just
limited operating area is available for the measurements caused
y the fuel cell capabilities, physical laws, test equipment, or inter-

ctions between these components. To give a simple example for
quipment limitations just consider the gas supply to the cell. Mass
ow in general is limited to a certain range and therefore the sto-

chiometry � (� = ratio of supplied reactant to chemically needed
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eactant) is also limited in dependency of the current density. At
low load point using maximum gas flow a higher stoichiometry

an be realized than at high load points. Also the fuel cell itself will
ork properly with low gas pressure at low loads, but not at high

oads.
Therefore it is on the one hand important to minimize the exper-

mental work with consideration of these constraints and on the
ther hand to achieve the best possible parameter estimation. The
im of this article is to show and demonstrate a systematic method
or investigation of a fuel cell, which performs both tasks simulta-
eously. It is known that the quality of the parameter estimation
epends on the used measurement points and hence on the design
f experiments (DoE). Therefore the issue can also be understood as
o find the data set, which delivers the largest information content
f experimental data are available or if not to provide an optimized
xperimental design for a PEMFC stack.

Box and Lucas [1] show in their work a mathematical theory for
ncreasing the quality of least squares based parameter estimation
y minimizing the covariance matrix of its solution. Several criteria

re published in the literature [2] to evaluate this optimization. In
his paper these criteria are compared and the most promising one
s applied on a set of 405 test points, to find the set of 50 points

hich is most suitable for the parameter estimation of an empirical
uel cell voltage model. Moreover, it is investigated whether this

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:markus.meiler@daimler.com
dx.doi.org/10.1016/j.jpowsour.2008.08.068


M. Meiler et al. / Journal of Power Sources 190 (2009) 48–55 49

Table 1
Typical factor levels of selected inputs in PEMFC characterization

Input � Symbol Unit Factor levels

Current density i A/cm2 10–20
Cathode gas pressure p bar 3–6
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Table 2
Experimental conditions

State Symbol Operating range

Cathode Anode

Pressure pc, pa 1.05–2.5 bar 1.05–2.5 bar
R
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node gas pressure pa bar 3–6
elative humidity cathode gas rhc − 3–6
elative humidity anode gas rha − 3–6

ptimized data set increases the quality of parameter estimation
nd therefore the stack model accuracy.

. Design of experiments

.1. Design methods

If the operating area is unrestricted and the number of fuel cell
nputs are low, a full factorial DoE can be performed. Interactions
s well as nonlinearities can be detected if more than three factor
evels of each input are applied. But with a high number of inputs or
actor levels the experimental effort rises exponentially. In Table 1
he typical number of factor levels is given. A full factorial design of
xperiments with the maximum values of each input would thus
ontain 25.920 experimental points.

If a system behaves linear within an unrestricted operation area
fractional factorial DoE can be chosen. That technique reduces the
umber of experiments compared to full factorial designs but is not
ble to detect interactions between inputs or nonlinear behaviour.
nly a fraction of the edges of the hypercube, defined by the dimen-

ion of the operating area, is tested.
A trade-off between effort and ability to detect interactions and

onlinear behaviour gives a so-called central composed design. All
dges of the hypercube are used. Additional, centre points and star
oints are added. These three designs are easy to construct, but all
equire an unrestricted operating area and are therefore not suited
or global fuel cell characterization.

A first approach to design experiments in restricted areas is the
o-called Box–Benken design. In this design the number of experi-
ents is fixed and cannot be varied. The experiments are not placed

n the edges of the operating area. More details about the men-
ioned and additional designs can be found in DoE literature, like
efs. [3–5]. More suited to the requirements for PEMFC characteri-
ation are optimal DoEs.
.2. Optimal DoE

Since powerful computing has become affordable, more com-
lex and powerful design criteria have been developed. The group

ig. 1. Graphic interpretation of the optimal DoE criteria for minimizing the covari-
nce matrix.
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elative humidity rhc, rha 0.32–1 0.32–1
emperature T 75 ◦C
urrent density i 0–2 A/cm2

f optimal criteria is able to design nonlinear DoEs with a low num-
er of experiments in arbitrary restricted operating areas without
eing limited to a fixed number of experiments or factor levels.

Ref. [1] shows that the covariance matrix COV of the estimated
odel parameters � obtained by a least squares estimation can be

pproximated by the following equation:

OV = (FIM′ · FIM)−1�2. (1)

ith the, in general unknown, variance �2 and FIM the Fisher infor-
ation matrix. The FIM is a ˚-by-� matrix of the partial derivative

m (Eq. (2)) of the �th model parameter �� for the dth set of
xperimental conditions �d (Eq. (3)). Here d is the run index of
he experimental conditions. It starts with 1 and ends at ˚. Addi-
ionally, � is the index of the model parameters in the range from
to �.

IM = {fim�d}, � = 1 . . . �, d = 1 . . . ˚. (2)

m�d =
[

∂ fim(�, �)
∂��

]
�d

. (3)

The basic idea of all optimal DoEs is the minimization of a quality
riterion J related to COV or (FIM′·FIM)−1 respectively. This opti-
ization can be achieved by several design criteria [5].
The trace-criterion (A-criterion) (Eq. (4)) minimizes the trace,

A = trace
[(

FIMT · FIM
)−1

]
(4)

he determinant-criterion (D-criterion) (Eq. (5)) minimizes the
eterminant,

D = det
[(

FIMT · FIM
)−1

]
(5)

he eigenvalue-criterion (E-criterion) (Eq. (6)) minimizes the max-

mum eigenvalue (EIG),

E = max
{

EIG
[(

FIMT · FIM
)−1

]}
(6)

able 3
xperimental details of campaigns 1–3 (rha/c = 0.92)

ampaign

2 3

as pressure

c (bar) pa (bar) pc (bar) pa (bar) pc (bar) pa (bar)

.05 1.05 1.05 1.50 1.50 1.05

.10 1.10 1.10 1.50 1.50 1.10

.25 1.25 1.25 1.50 1.50 1.25

.50 1.50 1.50 1.50 1.50 1.50

.75 1.75 1.75 1.50 1.50 1.75

.00 2.00 2.00 1.50 1.50 2.00

.50 2.50 2.50 1.50 1.50 2.50



5 Power Sources 190 (2009) 48–55

a
m

J

A
t
t
m
s
c
i

3

3

e
s
p
a
c
f

Table 4
Experimental details of campaigns 4–6 (pc/a = 1.5 bar)

Campaign

4 5 6

Gas relative humidity

rhc rha rhc rha rhc rhc

0.32 0.32 0.32 0.92 0.92 0.32
0.40 0.40 0.40 0.92 0.40
0.80 0.80 0.80 0.92 0.80
0
1

o
r
c

r

0 M. Meiler et al. / Journal of

nd the confidence-interval-criterion (M-criterion) (Eq. (7)) mini-
izes the maximum element of the main diagonal.

M = max

{√[(
FIMT · FIM

)−1
]

��

}
, � = 1, 2 . . . �. (7)

lso a geometric interpretation of these criteria is possible, whereas
he A-criterion equals the mean axis length and the E-criterion
he longest axis of the confidential ellipsoid spanned by the esti-

ated parameters. The M-criterion can be explained by the longest
ide of an imaginary box around the ellipsoid and the D-criterion
an be interpreted as the volume of the confidential ellipsoid. An
llustration of these criteria is drawn in Fig. 1.

. Experimental data and fuel cell model

.1. Experimental data

For the validation of the investigated design criteria a set of
xperiments is used. In total 405 different data points are available,

ince 33 experimental runs have been carried out varying cathode
ressure pc, anode pressure pa, cathode gas relative humidity rhc

nd anode gas relative humidity rha and a complete polarization
urve was measured for each run. All measurements were per-
ormed under isothermal conditions of 75 ◦C. To avoid the influence

r
p
a
a
e

Fig. 2. Flow chart of sequential search algor
.92 0.92 0.92 0.92 0.92

.00 1.00 1.00 0.92 0.92 1.00

f gas supply to fuel cell voltage, the cell was fed with 30 times more
eactants than the cell consumed. An overview of all experimental
onditions is given in Table 2.

During the first three campaigns, gas pressures are varied while
elative humidity of anode and cathode gas is kept constant at
ha/c = 0.92. During campaigns 4 and 6 both pressures remained at

= 1.5 bar and the relative humidity values at cathode and anode
a/c
re 0.32, 0.40, 0.80, 0.92, and full saturated conditions with a rel-
tive humidity rha/c = 1.0. In Tables 3 and 4 more details about the
xperimental conditions are given.

ithm for deterministic operating area.
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Fig. 3. Flow chart of sequential search algorithm for a restricted nondeterministic operating area.
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Table 5
Estimated parameters of the SEES PEMFC model [8]

Parameter Value Parameter Value

�1 0.85620258 �8 0.02675283
�2 −0.05591375 �9 0.15494972
�3 0.0005173 �10 0.71394995
�4 0.04775405 �11 0.05764422
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problems with disadvantageous start values [9]. However, genetic

T
C

#

2

2
2
2
2
2

2

5 0.00430726 �12 1.39237089
6 12.5663035 �13 4.48394466
7 −0.02481325 �14 0.00126953

More details about experimental work and results have been
reviously published in Refs. [6,7].

.2. Fuel cell model

In a previous publication of our team [8] a valid semi-empirical
xpert system (SEES) fuel cell model was presented. The stationary
ell voltage is described by the following equation:

cell = Uocv − Uact − Uohm − Udif − Uhum. (8)

he open circuit voltage Uocv in Eq. (8) is described as a function of
ydrogen and air pressure. Both influences are lumped together in
simple equation (Eq. (9)) with just three free parameters:

ocv = �1 + �2 ln(pc) + �3 ln(pa). (9)

f the cathode pressure rises, the first term in Eq. (10) will decrease
eading to lower activation loss Uact. The logarithmic dependency
f the load i delivers even for a load of zero valid values because of
leakage current parameter �6.
act = [�4 − �5 ln(pc)] ln(i + �6). (10)

he quasi-linear ohmic resistance part of the current–voltage curve
hows a dependency on cathode pressure which is described with
linear interaction term of current density and cathode pressure

a
s

o

able 6
andidate set for the simple example

i (A/cm2) pa (bar) # i (A/cm2) pa (bar)

1 0 1.1 29 0 1.5
2 0.01 1.1 30 0.01 1.5
3 0.05 1.1 31 0.05 1.5
4 0.1 1.1 32 0.1 1.5
5 0.2 1.1 33 0.2 1.5
6 0.4 1.1 34 0.4 1.5
7 0.6 1.1 35 0.6 1.5
8 0.8 1.1 36 0.8 1.5
9 1 1.1 37 1 1.5

10 1.2 1.1 38 1.2 1.5
11 1.4 1.1 39 1.4 1.5
12 1.6 1.1 40 1.6 1.5
13 1.8 1.1 41 1.8 1.5
14 2 1.1 42 2 1.5
15 0 1.3 43 0 1.5
16 0.01 1.3 44 0.01 1.7
17 0.05 1.3 45 0.05 1.7
18 0.1 1.3 46 0.1 1.7
19 0.2 1.3 47 0.2 1.7
0 0.4 1.3 48 0.4 1.7

21 0.6 1.3 49 0.6 1.7
2 0.8 1.3 50 0.8 1.7
3 1 1.3 51 1 1.7
4 1.2 1.3 52 1.2 1.7
5 1.4 1.3 53 1.4 1.7
6 1.6 1.3 54 1.6 1.7

27 1.8 1.3 55 1.8 1.7
8 2 1.3 56 2 1.7
Sources 190 (2009) 48–55

s given in the following equation:

ohm = �7 · i + �8 · i · pc (11)

o model the diffusion loss Udif, Eq. (12) is used.

dif = �9pc
−1 exp(�10i). (12)

q. (13) calculates the last term of Eq. (8), the loss due to insufficient
embrane humidity:

hum = �11 exp(�12i)(1.01 − rha)�13 + �14rha. (13)

he given PEMFC model uses kmax = 4 inputs (load i, cathode pres-
ure pc, anode pressure pa, and anode gas relative humidity rha) and
= 14 model parameters. A valid set of these parameters is given in

able 5.
Using the PEMFC model [Eqs. (8)–(13)] in Eqs. (2) and (3) the

IM can be calculated and used for the introduced design criteria
Eqs. (4)–(7)].

. Optimization algorithm

.1. Algorithm for deterministic operating areas

From the mathematical point of view, a nonlinear optimization
roblem has to be solved. However, the design task is restricted
egarding limitations of experimental equipment and examinee.
nother challenge is the large number of degrees of freedom that
an be adjusted to optimize the design criterion. Looking at the used
uel cell model with kmax = 4 inputs (�) and a wanted DoE with

= 50 independent test points, 200 parameters would influence
he design criterion. All these parameters have to be investigated
o get the optimal experimental design. Most used numerical gra-
ient methods or gradient free optimization algorithms will have
lgorithms are less sensitive due to start values but convergence
peed is low [10]. Therefore the optimal DoE is a promising way.

Since the A-, E- and M-design criteria are just approximations
f the searched volumes the D-criterion is always the best possible

# i (A/cm2) pa (bar) # i (A/cm2) pa (bar)

57 0 1.9 85 0 2.3
58 0.01 1.9 86 0.01 2.3
59 0.05 1.9 87 0.05 2.3
60 0.1 1.9 88 0.1 2.3
61 0.2 1.9 89 0.2 2.3
62 0.4 1.9 90 0.4 2.3
63 0.6 1.9 91 0.6 2.3
64 0.8 1.9 92 0.8 2.3
65 1 1.9 93 1 2.3
66 1.2 1.9 94 1.2 2.3
67 1.4 1.9 95 1.4 2.3
68 1.6 1.9 96 1.6 2.3
69 1.8 1.9 97 1.8 2.3
70 2 1.9 98 2 2.3
71 0 2.1 99 0 2.5
72 0.01 2.1 100 0.01 2.5
73 0.05 2.1 101 0.05 2.5
74 0.1 2.1 102 0.1 2.5
75 0.2 2.1 103 0.2 2.5
76 0.4 2.1 104 0.4 2.5
77 0.6 2.1 105 0.6 2.5
78 0.8 2.1 106 0.8 2.5
79 1 2.1 107 1 2.5
80 1.2 2.1 108 1.2 2.5
81 1.4 2.1 109 1.4 2.5
82 1.6 2.1 110 1.6 2.5
83 1.8 2.1 111 1.8 2.5
84 2 2.1 112 2 2.5
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Table 7
Results for maximization of D by using different optimization algorithms at a work-
station (DELL Precision 390 Workstation, Intel core 2 duo 1.86 GHz, 8 GB RAM,
WinXP64, MatlabR2007b)
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ig. 4. SSE of the model in dependency of the determinant of the covariance matrix
f the used experimental design.

hoice. The other criteria are just advisable for very fast optimiza-
ions because of a reduced computing time.

If there is only a low hysteresis in fuel cell behaviour, the order of
erforming the experiments will not influence much the measured
oltage and it is possible to change the order of the experimental
onditions. That offers the opportunity to optimize the experi-
ental design sequentially. In Fig. 2 the flow chart of a developed

equential search (SS) algorithm which identifies the best ˚ exper-
ments of MCImax given candidates is shown. At first, the number of
eneral iterations GImax and a start experimental design, randomly
hosen or predetermined, must be defined. Then the first row (d = 1)
f the start experimental design is substituted by the first candidate.
fter this step the FIM1 is determined and the determinant D1, as

n the following equation:

1 = JD1
−1 = det(FIM1′ · FIM1). (14)

s calculated. Whereas JDMCI (Eq. (5)) needs to be minimized (with
CI as the run index in the range of 1 to MCImax), DMCI must be max-

mized to find an improved experimental design. The advantage of
sing DMCI instead of JDMCI is the avoidance of numerical problems,

aused by the inverting of a singular matrix, if a disadvantageous
xperimental design is tested. Both steps are repeated for all candi-
ates. At the end, the candidate that delivered the maximum DMCI

s stored and taken at the new first row. Now the algorithm contin-
es with the second row (d = 2) and again all candidates are tested

ig. 5. SSE of the model in dependency of the ratio of experiments (˚) to the number
f parameters (�).
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uration 175 s 9.5 h 1.3 h
1.62 × 10−6 6.53 × 10−8 3.98 × 10−14

nd the candidate with the largest DMCI is stored. This is repeated
ntil all d experiments are optimized once (d = ˚). After that, this

oop is repeated GImax-times.

.2. Algorithm for restricted nondeterministic operating areas

In many cases no experimental data will be available. The advan-
age is an improved quality of the parameter estimation since all
perating points in the restricted area can be investigated in con-
ideration of maximizing the covariance matrix. The disadvantage
s that our sequential search has to be upgraded by the generation of

CImax candidates. Fig. 3 shows the varied flow chart. The only dif-
erence to the hitherto used algorithm is that kmax random numbers
n the range of 0–1 are generated. The current density �d1 is gener-
ted randomly by a Monte-Carlo method and the other inputs �dk
k = 2. . .kmax) are interpolated in the nonlinear restricted operating
rea in dependence of the current density.

The generated candidates are tested and compared in view of
he parameter estimation quality and the experimental design is
radual improved equal to the previous algorithm.

. Simple example using sequential search to create
-optimal DoE

In this section a simple example is given demonstrate how to
reate a D-optimal DoE for a PEMFC using the sequential search
pproach.

To keep the example clearly represented, only the influence of
node pressure dependency is considered in this section. The sim-
lified model is set-up by reducing Eqs. (8)–(12) to current density
an anode pressure pa dependent terms. The resulting equation

eads as

cell = ˛1 + ˛2 ln(pa) − ˛3 ln(i + ˛4) − ˛5i − ˛6 exp(˛7i). (15)

his simple model take kmax = 2 inputs into account. The first input
�1) is the current density i, and the second (�12) is anode pressure.
urther the model includes in total � = 7 model parameters. Thus,
he parameter index � counts from 1 to 7.

Next the general fim�d is calculated. For an arbitrary set of exper-
mental conditions d, fim includes 7 columns and reads as given in
he following equation:

md =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ln (pa)

− ln (i + ˛4)
−˛3

i + ˛4
−i

− exp (˛7 · i)

−˛6 · i · exp (˛7 · i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(16)
o calculate the design criterion D, as is given in Eq. (14), the initial
odel parameter must be given to Eq. (16). Each ˛ corresponds

o a � of the original model, as described in Eqs. (8)–(11), which
re given in Table 5, and are calculated with an assumed cathode



54 M. Meiler et al. / Journal of Power Sources 190 (2009) 48–55

Table 8
Calculated determinant by sequential search after each iteration step for different start sets

GI D

0 1 2 3 4 5

S 1 × 10
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tart set A 0 1.45 × 10−6 1.6
tart set B 2.62 × 10−18 1.58 × 10−6 1.6
tart set C 2.06 × 10−16 1.57 × 10−6 1.6

ressure of 1.5 bar following equation:

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�1 + �2 · ln(1.5)
�3
�4 − �5 · ln(1.5)
�6
�7 + �8 · 1.5
�9 · 1.5−1

�10

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

ow we assume Ui-curves are experimentally measured from 0 up
o 2 A/cm2 with 14 load points each Ui-curve, and anode pressure
s varied in the range from 1.1 to 2.5 bar in 0.2 bar steps.

To design the D-optimal DoE the maximal number of exper-
ments ˚ has to be defined. In this example, two times more
xperiments shall be carried out to identify model parameters well.
his leads to ˚ = 14. A traditional DoE set-up by a scientist would
ow measure for every anode pressure a single Ui-curves, which
ould lead to 8 × 14 = 112 single measurements.

These 112 experimental conditions are given in Table 6, and
re used as candidate set (MCImax = 112) for the sequential search
lgorithm.

The sequential search algorithm is initialized with the first
4 candidates, which equals a initial design criterion value of
initial = −1.77 × 10−44. This very poor value is related to the fact

hat there are only initial candidates at pa = 1.1 bar. During first run
d = 1) of the algorithm the first entry of initial DoE is sequentially
ubstituted by all 112 candidates, and the resulting design criteria
re calculated. At the end candidate #108 gives best design crite-
ion for first entry with a D1 = 1.46 × 10−28, and therefore, is stored
o the DoE. The design criterion improved by 72 orders of magnitude
ust by replacing the first entry. Best candidate for second entry is
ound to be candidate #100, with D2 = 2.29 × 10−28. After complete
ptimization of all 14 entries in the DoE the sequential search algo-
ithm repeats two times (GImax = 3) the complete process. The final
esign criterion (Dfinal) can be improved to Dfinal = 1.84 × 10−27, and
ontains the candidates #1, 5, 8, 10, 13, 14, 99, 100, 103, 105, 106,
09, 111, and 122.

. Experimental validation

.1. D-criterion

For the validation of the D-optimal design criterion the � = 14
arameters of the PEMFC model are estimated for different sets of
= 50 data points selected from the 405 experimental data points.

or the evaluation of the estimated model, the sum of squares due
o errors (SSE) between measured Ud and model predicted fuel cell
oltage Ûd, as given in the following equation, is used.

SE =
�∑(

Ud − Ûd

)2
(18)
d=1

he SSE of each validation trail (SSEvalidation) is plotted in Fig. 4
gainst the achieved determinant (Dvalidation) to observe potential
orrelations. A suitable scaling of the respective optimum (SSEmin
nd Dmax) is chosen for a better illustration.

p
i
b
i
d

−6 1.62 × 10−6 1.62 × 10−6 1.62 × 10−6

−6 1.62 × 10−6 1.62 × 10−6 1.62 × 10−6

−6 1.62 × 10−6 1.62 × 10−6 1.62 × 10−6

Clearly a strong correlation between both states can be seen.
oreover a strong decrease of SSE can be seen with increased deter-
inant. A model with parameters from an experimental design
ith a small determinant has a significantly bigger SSE than a
odel with parameters from an experimental design with a large

eterminant. Since the SSE decreases strongly exponential with
n increasing determinant, the D-criterion is for sure an excellent
ethod to evaluate the quality of parameter estimation and was

sed for all further validations.

.2. Sequential search

The performances of three different optimization approaches to
aximize D were investigated. The proposed sequential search was

ompared to a Levenberg–Marquadt (LM) algorithm and a genetic
lgorithm (GA). Further information about both methods can be
ound in Refs. [9,11,12]. All three algorithms were initialized with
he same set of randomly chosen 50 experimental conditions with
initial = 2.06−16. In Table 7 the maximum achieved determinant and

he duration to get this result is given for each algorithm.
Investigating various configurations of the LM algorithm, only

slight improvement of D could be achieved and 1 h 20 min were
eeded to calculate the best result. In most of the investigated LM
lgorithm set-ups even no improvement of the design criterion was
chieved. Using a GA an improved maximization by 8 orders of
agnitude of D is gained by cost of a very long calculating time.

ut also the GA depends strongly on the used algorithm options
nd delivered no results in many cases. Using the sequential search
lgorithm a 24.8 times greater D in a very fast calculation of less than
min was found at a DELL Precision 390 Workstation, using Intel
ore 2 duo 1.86 GHz P, 8 GB RAM, WinXP64, and MatlabR2007b.

.3. Robustness of sequential search

Usually there are no good start values available, which mean a
ood experimental design. Different sets were used for the sequen-
ial search of the optimal 50 candidates for investigating the quality
f this method in consideration of the start values. The results for
hree different start sets are displayed in Table 8. Even starting with
very poor experimental design as start set A, the algorithm works
roperly. The maximum determinant was found for every start set
lready after three iterations (GI = 3) and even the first and second
teration delivered useful determinants. Thus the sequential search
s not only a very fast, but also a very robust method to optimize
he proposed design criterion.

.4. Experimental effort

Another issue of this work is the question how many exper-
ments are needed for getting satisfying parameter estimations.
herefore the ratio of the number experiments to the number

arameters is plotted against the SSE between model and exper-

mental data in Fig. 5. A significant improvement of the model can
e observed till a ratio of four. More experiments deliver just a low

mprovement and the SSE reaches a steady state which can not be
ecreased because of inaccuracies of the model itself.
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. Discussion

A constraint in this work is that no dynamic database was inves-
igated. Furthermore, the gained experimental design can be a local
ptimum and so there is no guarantee that not a higher, unnoticed
lobal optimum exists.

For reducing the computation time the replacement of the deter-
ined number of iterations a in Fig. 2 by an additional algorithm

top similar to the abort criterion for numerical algorithm is one
f the next steps. If gradient of D does not improve significantly
etween two loops, no further iterations are needed. The advan-
age would be an optimized number of iterations and the avoiding
f unnecessary steps as seen in Table 8.

Also interesting would be a hybrid approach for optimizing the
xperimental plan. The sequential insertion of all candidates or
he generation of random variables could be replaced by a local
earch of the optimum row by using a numerical algorithm like for
xample a LM algorithm.

Problems with the introduced approach could appear, when old
tacks with thick membranes are used. These stacks often have a
ysteresis of about 20 mV. In this case, the order of experimental
onditions is not negligible and the SS may deliver invalid results.

. Conclusions

It is shown that the model is valid for DoE and prior improve-
ent of the experimental design is a promising way for enhanced

arameter estimation. Especially, the D-optimal design approach is
uitable to identify model parameters efficiently as Fig. 4 demon-
trates. The developed sequential search is compared to usual
sed methods of optimization and shows a significant lower cal-
ulating time as well as a couple of orders of magnitude larger
eterminant.

The sequential search is moreover recommendable for DoE
ecause of a low number of iterations are needed and the method
roves a high robustness against disadvantageous chosen start
esigns. Already a number of experimental data points, which is
s big as four times the number of model parameters, delivers an
ccuracy model simulation result, further experiments delivers just
ow improvements and are in the most cases not recommendable
n view of increasing experimental effort.

All in all the prior optimization of the experimental design in

rder to improve the parameter estimation is an intelligent way
o save time and thus to reduce the cost of experimental work
ignificantly.

The benefit performing such a DoE is, to use expensive exper-
mental resources much more efficiently. Traditionally, fuel cells

[
[
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re characterized by Ui-curves, as described in Refs. [6,7]. There,
he characterization for just 4 inputs causes an effort of 405 sin-
le measurements. Using the proposed D-optimal DoE together,
ith the sequential search, this effort can be reduced by a factor

f more than 8 to a total cost of 50 single measurements. With the
roposed method, experimental groups are able to characterized
uel cells or fuel cell stacks in a very large operation area with an
ffordable experimental effort. This helps to speed up global fuel
ell modelling tremendously, and provide urgent model-input to
uel cell system concept, design, and engineering work. This con-
ribution helps to provide efficiently high quality models, which are
he key-tools in modern drive train development. Reducing engi-
eering costs, and improving fuel cell drive train performance is the
ajor hurdle in commercialization this zero emission technology,

nd is supported by this work.
Further work is advisable in terms of taking over this general

ethod to other fields of science and so to establish our method as
general valid way for optimizing experimental designs.
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